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Abstract

In this paper first we talk about neural network, or rather their links with human brain and how they
work. Then we focus about Caffe Libraries, a deep learning framework, created by Yangqing Jia during
his PhD at UC Berkeley: we analyze libraries’ anatomy and then we see some neural network examples
built with Caffe. Finally we use Caffe Libraries to create an Autoencoder and an Autoencoder k-Sparse,
that is an autoencoder with linear activation function, where in hidden layers only the k highest activities
are kept: this process encourages sparsity of the codes learned by autoencoder k-Sparse; this because
sparsity improves classification tasks. After that we train and test theese two neural networks with two
different dataset: The Olivetti Faces and Faces in the Wild. We report graphical results (feature maps and
autoencoder codes for distinct levels of sparsity) and loss function results.

I. Introduction

In early years neural networks had a great
improvement. There were two main prob-
lems that obstructed the development of

this discipline: the learning algorithm in multi-
layers feedforward neural network and then
the learning algorithm in (very) deep neural
network. These two problems were solved
with backpropagation algorithm and restricted
Boltzmann machines (RBMs). Also the increas-
ing power of electronic calculator helped the
development of neural networks.
In this paper we focus about a particoular type
of neural networks, autoencoders, networks
used to convert high-dimensional data in low-
dimensional codes. An autoencoder is a neural
network that has a small central layer and
that is trained to reconstruct high-dimensional
input vector.
With Caffe Libraries we realize a specific type
of autoencoders called autoencoder k-Sparse: it
is a networks trained in a way that encourages
sparsity in order to improve performance on
classification tasks. An autoencoder k-Sparse
is an autoencoder with linear activation func-
tion, where in hidden layers only the k highest
activities are kept.

We test it with two dataset: The Olivetti Faces
and Faces in the Wild.

I. Neural Networks

Neural networks were inspired by the exami-
nations about human’s central nervous system.
In an artificial neural network, are connected
togheter simple artificial nodes, known as neu-
rons, neurodes, processing elements or units, to
form a network which mimics a biological
neural network.

Human brain is a very complex and affas-
cinating machine and it is very difficult to try
to imitate it: after all we don’t have a good
awareness about human brain yet. Generally,
in animal brains there are complex organisa-
tions of neural cell: their work is, for example,
to recognise input parameters that come from
external world, the memorisation and the reac-
tion that control body.

We can say a neuron, also known as a neurone
or nerve cell, is composed by three principal
parts:
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• soma: the cell body;

• axon: a long projection of a nerve cell
that conducts electrical impulses away
from the neuron’s cell body;

• dendrites: the branched projections that
act to propagate the electrochemical stim-
ulation received from other neural cells
to the cell body.

Scientific studies reveal that neurones com-
municate with electric impulse, and each neu-
ron does a weighted sum of these impulses.
In plain terms we can see a neuron as a black
box that has weighted data input from other
neurons and produces weighted data output
for others neurons.

II. Evolution of Neural Networks

The first computational model for neural net-
works was created by Warren McCulloch and
Walter Pitts in 1943, based on mathematics
and algorithms: they called this model thresh-
old logic. This model proposed two distinct
approaches to future research about Neural
Networks: one approach focused on biological
processes in the brain and the other focused on
the application of neural networks to artificial
intelligence.

The invention and develop of electronic cal-
culators during the WWII allowed the use of
computational machines to simulate neural
networks. In 1958 Frank Rosenblatt created the
Perceptron at the Cornell Aeronautical Labora-
tory: it is an algorithm for pattern recognition
based on a two-layer learning computer net-
work. It was a forerunner of the actual neural
networks.
The main difference between McCulloch and
Pitts’ computational model and Rosenblatt’s
perceptron is that the second one has variable
synaptic weights and so it can learn.
From a mathematical point of view we can
describe Rosenblatt’s Perceptron as shown
below:

yi = Φ(Ai) = Φ(∑(wi,j, xj)− ϑi))

Where Φ is called Activation Function, ∑ is the
Transfer Function, wi,j are the weights, ϑ the
threshold and xj the inputs.
We can note that output correspond of a sum
of weighted inputs and the threshold’s single
neuron value decides about its activation.

For about ten years there were a lot of
reasearches about neural networks but in 1969
Marvin Minsky and Seymour A. Papert, in [5],
demonstrated that Perceptron, but in general
a simply two-layer neural networks, can only
solve problems based on a linear separability
solution. For example perceptron is not able to
compute XOR function but only AND function.
Besides in the 70’s computers were not sophis-
ticated enough to effectively handle the long
run time required by large neural networks.

The problem about computers’power can be
simply solved by techological progress in the
80’s and 90’s and later, in accordance with
Moore’s Law (1965): the number of transistors
in a dense integrated circuit doubles approxi-
mately every two years.
The problem about linear separability solution
can be solved adopting a multi-layer netowrk,
also called MLP (Multi-Layers Perceptron), but
it would introduce another relevant problem
about the learning: until 1986 doesn’t exist an
algorithm that was able to do training for MLP.
In 1965 David E. Rumelhart, G. Hinton e R. J.
Williams proposed the Error Backpropagation,
also know only as Backpropagation: it is used
in conjunction with an optimization method,
such as gradient descent, and it calculates the
gradient of a loss function with respects of all
the weights in the network. The gradient is
fed to the optimization method which in turn
uses it to update the weights, in an attempt to
minimize the loss function.
The steps of Backpropagation algorithm are:

• Forward Propagation: a training pat-
tern’s input is propagated through the
neural network in order to generate the
propagation’s output activations.

• Backward Propagation: the propaga-
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tion’s output activations is propagated
through the neural network using the
training pattern target in order to gen-
erate the deltas of all output and hidden
neurons.

• Weight Updates: weights are updated in
this way:

∆wi,j(t) = −η
δE

δwi,j(t)
+ α∆wi,j(t − 1)

where η is the learning rate, otherwise
learning’s rate of the network, E the loss
function, α the momentum, a constant that
is used to avoid oscillation in weight up-
date, ∆wi,j(t) the actual matrix of weights
and ∆wi,j(t − 1) the previous matrix of
weights.

In recent years the relation between neural
networks and brain biological architecture is
debated, as it is not clear to what degree artifi-
cial neural networks mirror brain function.
In the 1990s, neural networks were overtaken
in popularity in machine learning by support
vector machines and other, much simpler meth-
ods such as linear classifiers. Renewed interest
in neural nets was sparked in the 2000s by the
advent of deep learning.

III. Topologies of Neural Networks

There are three main topologies for neural net-
work. The single-layer feedforward Neural
Network (Fig. 1) is the first and simplest type
of artificial neural network devised. In this
network, the information moves in only one
direction, forward, from the input nodes to the
output nodes. There are no hidden nodes and
there are no cycles or loops in the network.

Figure 1: Single-layer Feedforward

The multi-layer feedforward Neural Net-
work (Fig. 2) are similar to previous, but in
this case we have one or more hidden layers
that connect input to output layers. Even here
there are no cycles or loops in the network.

Figure 2: Multi-layer Feedforward

Finally, a recurrent neural network (Fig. 3)
is a class of artificial Neural Network where
connections between units form a directed cy-
cle. This creates an internal state of the network
which allows it to exhibit dynamic temporal
behavior. They can use their internal memory
to process arbitrary sequences of inputs. In
this paper we don’t spend a lot of time about
them.

Figure 3: Recurrent Net
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II. Caffe Libraries

Caffe is a deep learning framework, but in gen-
eral it can be used to work with neural network.
It was created by Yangqing Jia during his PhD
at UC Berkeley, and is in active development
by the Berkeley Vision and Learning Center
(BVLC) and by community contributors.
Caffe libraries were created in order to achieve:

• Clean architecture: libraries use simple
config files and it is very simple switch
CPU to GPU computation to use a cluster
of machines.

• Readable and modifiable implementa-
tion: a lot of developers contribuited to
Caffe’s evolution (about 600 fork in the
first year).

• Speed: Caffe developers say that Caffe
is the fastest CNN implementation avail-
able (2014).

• Community: there is a support comunity
on Github
(https://github.com/BVLC/caffe).

I. Anatomy of Libraries

Deep networks are network that have a lot
of hidden layers and they typically work on
chunks of data. Caffe defines a net layer-by-
layer in its own model schema, bottom-to-top
from input data to loss. The information go
through layers as blobs: the blob is the stan-
dard array and unified memory interface for
the framework. The details of blob describe
how information is stored and communicated
in and across layers and nets.

I.1 Net

The net is a set of layers connected in a graph
without cycles, called Direct Acyclic Graph
(DAG). Caffe controls the forward and back-
ward passes to ensure correctness.
A typical net begins with a data layer that loads
from disk and ends with a loss layer that com-
putes the objective for a task such as classifica-
tion or reconstruction.

I.2 Blobs

As mentioned, a blob is a wrapper over the
data that are passed along by Caffe; blobs also
provide synchronization capability between the
CPU and the GPU.
From a computation point of view blob stores
and communicates data in 4-dimensional ar-
rays in the order of (Num, Channels, Height
and Width), from major to minor. In this way
blobs provide a unified memory interface, hold-
ing data, model parameters, and derivatives
for optimization.

I.3 Solver

The solver coordinates the network’s forward
inference and backward gradients to form pa-
rameter updatesin order to improve the loss.
There are three Caffe solvers: Stochastic Gra-
dient Descent (SGD), Adaptive Gradient (ADA-
GRAD), and Nesterov’s Accelerated Gradient
(NAG). In our work we use only SGD.
The solver:

1. Creates the training network for learning
and test network(s) for evaluation;

2. Iteratively it calls forward and backward
computation and it updates parameters;

3. Snapshots the model and solver state
throughout the optimization.

where each iteration

1. Calls network forward to compute the
output and loss

2. Calls network backward to compute the
gradients

3. Incorporates the gradients into parameter
updates according to the solver method
updates the solver state according to
learning rate, history, and method to take
the weights all the way from initialization
to learned model.
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I.4 Loss

In Caffe, as in most of machine learning, learn-
ing is driven by a loss function (also known as
an error, cost, or objective function). A loss func-
tion specifies the goal of learning by mapping
current network weights to a scalar value speci-
fying the “badness” of these parameter settings.
The goal of learning is to find a setting of the
weights that minimizes the loss function.

I.5 Layers

The layer is the fundamental unit of compu-
tation in Caffe Libraries. A layer takes input
through bottom connections and makes output
through top connections.
Here a small list of possible layers:

• Convolution: it performs the convolu-
tion between an image input and a filter
(kernel). The output are k convolved fea-
tures, where k is the number of kernels.

• Pooling: an aggregation operation to re-
duce the number of convolved features,
on order to avoid overfitting and to in-
crease the robustness for variance.

• Local Response Normalization (LRN): it
performs a kind of “lateral inhibition” by
normalizing over local input regions.

• Softmax: a loss layer

• Sum-of-Squares / Euclidean: another
loss layer

III. Related Works

I. Autoencoders

In [1] is presented the aim of autoencoders:
they are used to convert high-dimensional data
in low-dimensional codes. Infact an autoen-
coder is a neural network that has a small
central layer and that is trained to reconstruct
high-dimensional input vector.
The gradient descent technique is used for net-
work’s weight update; it is suggested to do a
pretraining phase that consists in learning a

stack of restricted Boltzmann machines (RBMs)
to initialize weights in network and then do
the real train phase: that why in [1] is used a
deep autoencoder and it is difficult to adopt
backpropagation without weight inizialization
in deep neural network: pretraining greatly
reduces their total training time. In generale
in deep networks initial weights must be close
enough to a good solution.
Besides codes learnt by autoencodes are plot-
ted (Figure 11): we can see that they are clus-
tered in function of the input class.

Figure 4: An autoencoder learns clustered codes

IV. Autoencoders k-Sparse

In [4] is presented the idea of autoencoders k-
sparse: autoencoders are trained in a way that
encourages sparsity in order to improve perfor-
mance on classification tasks. An autoencoder
k-Sparse is an autoencoder with linear activa-
tion function, where in hidden layers only the k
highest activities are kept. This type of autoen-
coder is better on classification than denoising
autoencoders, networks trainedwith dropout
and RBMs.
Makhzani et al. demonstrate that k-sparse au-
toencoders are suitable for pre-training and
achieve results comparable to state-of-the-art
on MNIST and NORB datasets.
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V. Implementation with Caffe

Libraries

In this section, we evaluate the behaviour and
the performance of autoencoder and k-sparse
autoencoders created with Caffe Libraries.

I. Datasets

We use two datasets for the implementation.
The first we used is The Olivetti Faces dataset:
it contains about 400 images (92x112) taken
between April 1992 and April 1994 at AT&T
Laboratories Cambridge.
As described on the original website: "There
are ten different images of each of 40 distinct
subjects. For some subjects, the images were
taken at different times, varying the lighting,
facial expressions and facial details. All the im-
ages were taken against a dark homogeneous
background with the subjects in an upright,
frontal position (with tolerance for some side
movement)".
Olivetti’s images are quantized to 256 grey lev-
els and stored as unsigned 8-bit integers.

Figure 5: An example of The Olivetti Faces dataset

The second dataset is Faces in the Wild
dataset. It consists of 30,281 faces collected
from News Photographs. These faces have
been automatically labeled using a particoular

algorithm. Unlike Olivetti dataset here we have
color images (RGB) with a resolution of 85x85.

Figure 6: An example of Faces in the Wild dataset

II. Autoencoder with Olivetti

With Caffe libraries we created a 10304-1000-
10304 (input-hidden-output) autoencoder. The
value 10304 comes from image’s resolution.
The high number of neurons in the first layer
makes computation heavy. We used a machine
with an i7-950 @3.07 CPU and train and test
phases occupy about 10 hours for 50000 itera-
tions.
In fig. 7 we plot feature maps where we can see
that each neuron learns faces in a very general
way, infact we can’t see any part or detail of
faces.

Figure 7: Olivetti codes without sparsity
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III. Autoencoder k-Sparse with
Olivetti

We created a 10304-1000-10304 autoencoder k-
sparse. First, we pretrained network using
a dropout autoencoder with a dropout rate
of 50%, in order to have initial weights close
enough to the good solution. The pretrain
phase lasts 20000 iterations.
Then we trained the net with different levels
of sparsity (k) and we took the best results. In
particoular in fig. 8 we used k=70 and we did
50000 iterations.
With k=70 we encouraged autoencoder to learn
sparse codes: in other words some neurons
learn even for other neurons that have not a k
hightest activation.
From a graphical point of view faces, or parts
of theese, appears in some neuron: this result
depends on the level of sparsity we have cho-
sen.

Figure 8: Olivetti codes with k=70

However faces in fig. 8 are too similar:
in this way autoencoder learns only frontal
faces with no particoular details (for example
glasses, smiles, long hair...). The learning pro-
cess of autoencoder k-sparse doesn’t generalize
enough and that it is a negative condition for

classification tasks.
Probably this appens because dataset has a
small number of images and images are too
similar: we don’t have, for example, different
points of view for faces. This is confirmed by
the plot of loss during training phase (fig. 9):
we can note that after about 5000 iterations
the loss value doesn’t change but rather the
graphic has some peaks. Autoencoder stops to
learn soon: after all the dataset is very small
and there are not a lot of faces to learn.

Figure 9: Train phase: loss with k=70

Also in fig. 10 we have the same trend of
the loss function: after about 7000 iterations
the value of the loss doesn’t change and it has
a high value.
For this reason we focused on another dataset:
Faces in the Wild.

Figure 10: Test phase: loss with k=70
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IV. Autoencoder with Faces in the
Wild dataset

In this case we created a 3025-1000-3025 au-
toencoder. We resized images from 85x85 to
55x55, and so the number of the input neurons
is 3025.
For each image we create mirror image and
cropped image to increase the number of to-
tal images and to augment variability to avoid
overfitting problem.
We used a machine with an i7-950 @3.07GHz
CPU and train and test phases occupy about
8 hours for 50000 iterations instead of the 10
hours for Olivetti dataset, because of we have a
smaller number of input neurons than Olivetti
case.
Also in this case without any level of sparsity
neurons learn very general codes and no face
appears in feature maps.

Figure 11: Faces in the Wild codes without sparsity

V. Autoencoder k-Sparse with Faces
in the Wild dataset

We created a 3025-1000-3025 autoencoder k-
sparse. We train and test the net with three
different levels of sparsity: k=25, k=60 and
k=200.

First, we pretrained network using a dropout
autoencoder with a dropout rate of 50%, in
order to have initial weights close enough to
the good solution. The pretrain phase lasts
20000 iterations. In fig. 12 we can see the

decreasing of the loss function’s value.

Figure 12: Loss in pretraining phase

In fig. 13 we plot a selection of six faces ob-
tained with k=25. We can see some details of
faces. With k=25 we forced too much sparsity
and results in features are too global and do
not factor the input into parts.

Figure 13: Faces in the Wild: k=25

When we increased sparsity level (k=60) we
obtained the best result. Neurons learn faces
with very significative details as is shown in fig.
14. The output is reconstructed using a higher
number of hidden units and thus the features
tend to be less global and its can be utilized in
classification tasks with relevant results.
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Figure 14: Faces in the Wild: k=60

With k=200 autoencoder tends to learn very
local features: these features are too primitive
to be used for classification using a shallow
architecture since a naive linear classifier does
not have enough capacity to combine these
features and achieve a good classification rate.
However, these features could be used for pre-
training deep neural nets.

Figure 15: Faces in the Wild: k=200

For a complete documentation we report
also the features of the output neurons; we
can see that autoencoder can reconstruct input
images with a good precision.

Figure 16: Faces reconstructed by autoencoder k-Sparse

Unlike Olivetti case, the loss with Faces in
the Wild dataset constantly decreases. The loss
function is the object function that we try to
minimize in autoencoder.

Figure 17: Train phase: loss with k=60

Also in test phase the value of the loss func-
tion costantly decreases.

Figure 18: Test phase: loss with k=60
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VI. Final considerations

There are three main considerations.
First, considerations about sparsity levels. The
learning of an autoencoder k-sparse depends
on the value of k.
In general we can say that:

• With a large value of k autoencoder k-
sparse learns very local features: theese
features are too primitive to be used
in classification tasks, but they could
be used to pretraining deep neural net-
works.

• With middle values of k we obtained
best features, no too global and no too
local.

• With too much sparsity (small value of
k) we obtained too global features that
do not factor the input into parts.

The second consideration is about Gabor filters.
In some images with k=60 there are some parts
that remember this filter. Gabor filter is a linear
filter used for edge detection.
Frequency and orientation representations of
Gabor filters are similar to those of the human
visual system, and they have been found to be
particularly appropriate for texture representa-
tion and discrimination.
Simple cells in the visual cortex of mammalian
brains can be modeled by Gabor functions.
Thus, image analysis with Gabor filters is
thought to be similar to perception in the hu-
man visual system.
Our neural network, that is built to reproduce
human brain, produces something like Gabor
filter and this can supports the idea that in
brain we have processes like Gabor filters.

Figure 19: Gabor filters

The third consideration is about Viola-Jones
algorithm used in face detection. As reported
in [6] the algorithm is based on simple black
and white patterns that are used to detect faces
in images. The base idea is to identificate faces
with its significative features. In our results we
see some faces that have dark areas in constrast
with bright areas: we can say that also autoen-
coders k-sparse focus its learning on something
like Viola-Jones patterns.

Figure 20: Viola-Jones patterns
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